学習コンテンツテック企業求人ブログ面接対策サポート

Coding InterviewCat

トップ

01 Coding InterviewCat

はじめに

02 イントロダクション03 Coding InterviewCat対象読者

コーディング面接対策とロードマップ

04 企業ごとの対策のレベル感05 コーディング面接に対する心構え06 コーディング面接対策ロードマップ

Python基礎と計算量

07 コーディング面接で必要なPythonの学習08 計算量とBig O

Discordサポートについて

09 Discordサポート(購入者特典)

本書掲載のLeetCode問題集

10 本書に掲載されているLeetCode問題集

配列 / 文字列

11 配列と文字列(導入)12 ハッシュテーブル(導入)13 ソート(導入)14 スタック(導入)15 配列 / 文字列(基礎)二重ループ16 配列 / 文字列(基礎)ハッシュテーブル17 配列 / 文字列(基礎)ソート, カスタムソート, バケットソート18 配列 / 文字列(基礎)行列 2D Matrix19 配列 / 文字列(基礎)スタック20 配列 / 文字列(応用)累積和(Prefix Sum)21 配列 / 文字列(応用)Two Pointers22 配列 / 文字列(応用)Sliding Window23 配列 / 文字列(応用)In-place Counting, Negative Marking24 配列 / 文字列(応用)Quickselect

ヒープ / 優先度付きキュー

25 ヒープ / 優先度付きキュー(導入)26 ヒープ / 優先度付きキュー(基礎) heapify, heappush, heappop27 ヒープ / 優先度付きキュー(基礎)ヒープソート

再帰呼び出し / バックトラック法

28 再帰呼び出し / バックトラック法(導入)29 再帰呼び出し / バックトラック法(基礎)再帰30 再帰呼び出し / バックトラック法(応用)バックトラック

連結リスト

31 連結リスト(導入)32 連結リスト(基礎)リスト走査33 連結リスト(基礎)ノード削除34 連結リスト(基礎)リスト反転35 連結リスト(基礎) 複数のリスト走査36 連結リスト(応用) Two Pointers, Slow/Fast Pointers37 連結リスト(応用) 双方向リスト38 キュー(導入)

二分探索

39 二分探索(基礎)値の探索, 境界の探索40 二分探索(基礎)下界, 上界41 二分探索(応用)答えの決めうち二分探索, 最長部分増加列42 二分探索(発展)2D 最長部分増加列

二分木

43 二分木(導入)44 二分木(基礎)BFS, DFS45 二分木(基礎)巡回, 二分探索木46 二分木(応用)二分木の再構築, 二分木のシリアライズ

グラフ

47 グラフ(導入)48 グラフ(基礎)BFS, DFS49 グラフ(基礎)二次元配列50 グラフ(基礎)ダイクストラ51 グラフ(基礎)トポロジカルソート52 グラフ(応用)木の直径, 強連結成分, 関節点 & 橋53 グラフ(応用)Unionfind, 最小全域木54 グラフ(応用)Warshall-Floyd, 0-1 BFS55 グラフ(発展)グラフDP

動的計画法

56 動的計画法(導入)57 動的計画法(基礎)貰うDP, 配るDP58 動的計画法(基礎)”まで”を状態として扱う, 状態の拡張59 動的計画法(基礎)二次元状態DP60 動的計画法(応用)グラフDP, メモ化再帰DP61 動的計画法(応用)辞書で状態を管理, bitで状態を管理62 動的計画法(応用)2つのDP, 絶対値DP, ゲームDP63 動的計画法(発展)スタックとDP, 累積和とDP
64 [Coming Soon] Bit Manipulation65 [Coming Soon] 貪欲法66 [Coming Soon] トライ木、サフィックス木67 [Coming Soon] Intervals68 [Coming Soon] 数学
© 2026 InterviewCat. All rights reserved.
プライバシーポリシー利用規約特定商取引法に基づく表記運営お問い合わせフォーム
🧑‍💻
Coding InterviewCat
/
📖
ヒープ / 優先度付きキュー(導入)
📖

ヒープ / 優先度付きキュー(導入)

⚠️
メモリ上でのヒープ領域とは別物です。ここではデータ構造としてのヒープを扱います。
Heap(ヒープ)とはデータ構造の一種です。ヒープの実際の中身はただの配列となっています。また配列の中の要素には互いに大小関係があります。そして主に以下の3つの操作が登場します。(配列の要素数をNとしています。)
  1. heapify: 事前にの操作を行うことで、配列がヒープの構造となります。
  1. heappush: ヒープの構造を保ちながら新しい値の追加を行います。
  1. heappop: ヒープの構造を保ちながら最大値(最優先値)の取り出し(配列から削除)を行います。
またヒープの配列の先頭を参照することで最大値(最優先値)をで知ることができます。
Priority Queue(優先度付きキュー)はある優先度(例として、大きい値を最優先する)に従って、 優先度の高いものから順に取り出すことの出来る集合を指します。 挿入順序がどうであれ、優先度の高いものが必ず1番最初に取り出されます。この優先度付きキューを実現するデータ構造としてヒープが使用されます。実際にはヒープ = 優先度付きキューとして考えてもほぼ問題ありません。

全て読むには購入が必要です

このコンテンツを全て読むには購入が必要です

購入すると、このコンテンツの全ページにアクセスできるようになります。

非表示コンテンツ📝 2,538文字🖼️ 4枚の画像

Coding InterviewCat

Coding InterviewCatはコーディング面接に特化した教材です。コーディング面接に必要なPythonの学習、基本的なデータ構造とアルゴリズムとLeetCode効率的に学習する上での教材を用意しています。

価格¥29,800